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Abstract

This is an extended section Methods/Outstanding CNVs detection from Sykulski et al. ”Multiple samples

aCGH analysis for rare CNVs detection”, where the statistics mean Lq distance to other rank vectors is analyzed

in greater detail. The statistics is used to select outlier rows from logratio data matrix resulting from stacking

ACGH (Array Comparative Genomic Hybridization) results from many patients.

The robust statistical framework applied in our method enables to eliminate the influence of widespread

technical artifact termed ’waves’.

Methods
Outstanding CNVs detection

Although logratio data is already normalized by microarray extraction software, we observe noisy patterns

in it: wave bias and experimenter’s bias (Figure 1, also see Discussion). Wave bias has been documented in

the literature before [1].

To overcome these two pertaining obstacles we propose an intuitive solution: the idea is to work with
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logratio signal relative to other samples, i.e. for any fixed probe to replace the logratios by their ranks in all

samples. The highly beneficial effect of the algorithm is illustrated on Figure 1 (a) and (b), which present the

fragment of the genome with hybridization signal coded by logratios and their rankings, respectively. One

can observe that both wave pattern (causing spurious segment calls) and disrupted probes are eliminated,

while keeping the true positive segments (in this genome fragment one large deletion is visible).

Our procedure analyzes aCGH data from all samples (logratio matrix) to detect short fragments of k

consecutive probes (k–mers) being the markers of rare CNVs. The idea of markers is based on the definition

of rare pathogenic CNVs, which are nearly absent in control population and present in 1% or less of affected

individuals. Hence, we seek for markers in the set of k–mers for all samples (presented results were obtained

for a parameter k = 7). Outlier detection in high dimensional spaces is a non–trivial task. In our solution,

we follow the recommendation from a survey of outlier detection methods by Gogoi, et al. to use a distance-

based approach with a suitable choice of metrics [2].

We apply sliding window approach on a ranking transformed logratios matrix. For each window spanning

the range of k columns, we calculate the distances between the k–mers from all samples. For each k–mer,

we compare the average distance to all others in the same window. Then we approximate the distribution

of average distances and classify the k–mer as a marker if it lies in a 1% tail of this distribution.

More formally, consider a log2ratio matrix L and one of its k-windows LSQ, containing log2ratio data

coming from a set of patients S = {1, . . . , n}, and from consecutive probes from the set Q = {p, . . . , p+k−1}

(here probe ordering respects probes positions on the reference genome). The transformation of each of k

columns into ranks and division of resulting ranks by |S|+ 1 yields pseudo–ranks matrix RSQ with elements:

Rsq =
rank of Lsq in LSq

|S|+ 1
, s ∈ S, q ∈ Q

Let us consider, that S is a patient group sampled from a large group of all patients S, and that rows

of RS contained in [0, 1]k, are in fact pseudo-ranks in columns of S, respectively. Now, Rsq, taken from a

random patient s and probe q, has uniform distribution. Hence, RSQ is a sample from distribution Dp with

c.d.f. Dp : [0, 1]k → [0, 1] with uniform marginals: Dp (1, . . . , ui, . . . , 1) = ui ∀i. However, observe, that

if one or more patients in the sample exhibit CNV segment, columns RSq∈Q are correlated with each other,

hence Dp is not uniform on [0, 1]k. In statistics, distributions with uniform marginals on a hyper-cube [0, 1]k

are commonly described using copulas. C is a k-dimensional copula if C is a joint cumulative distribution

function of a k-dimensional random vector on the unit cube [0, 1]k with uniform marginals. Several families of

copulas (Gaussian copulas, t-copulas, Archimedean copulas), and their properties, were thoroughly studied
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in literature.

Our method for discriminating outliers is based on a statistics computed for each of n patients: mean Lq

distance to other rank vectors.

µq(s) =
1

|S|
∑
j∈S

p+k−1∑
l=p

∣∣∣Rsl −Rjl ∣∣∣q
 1

q

, s ∈ S, q ∈ (0, inf]

For the purpose of this work we selected L1 distance measure, both for simplicity and greater robustness

than L2.

In the case of one dimension k = 1 and in the continuous limit |S| → inf, the value of the µ1 statistics

for a patient with pseudo-rank z ∈ [0, 1] is given by:

µ1(z) =

∫ 1

0

|t− z| dt = z2 + (1− z)2

µ1(z) is monotonous over z ∈ [0, 12 ], and symmetric with respect to 1
2 , z has uniform distribution. Substitut-

ing u = 2|z − 1
2 | we obtain the inverse cumulative distribution function, and further the cdf and the density

of the null distribution for k = 1.

F−1µ1 (u) =

(
1 + u

2

)2

+

(
1− u

2

)2

=
u2 + 1

2
, u ∈ [0, 1]

Fµ1(x) =
√

2x− 1 , gµ1(x) =
1√

2x− 1
, x ∈ [

1

2
, 1]

For k > 1 the value of the µ1 statistics for a patient with pseudo-ranks z = (z1, . . . , zk) ∈ [0, 1]k is given

by:

µ1(z) =

k∑
i=1

∫ 1

0

|t− zi| dt =

k∑
i=1

z2i +

k∑
i=1

(1− zi)2 = ||z||22 + ||1k − z||22

This signifies that the µ1 statistics converges in limit |S| → ∞ to the sum of squared euclidean distances

from two extreme corners of hypercube: 0k and 1k (a k-mer in each of these corners has extreme ranks on

every probe).

For k > 1 if we undertake the independence of pseudo-ranked columns the null distribution Dk
µ1 of µ1

can be computed as a sum of independent variables. This underlines the adequacy of statistics µ1 as it

converges to the sum of squared euclidean distances from two extreme corners of hypercube: 0k and 1k (a

k-mer in each of the corners has extreme ranks on every probe). Figure 2 presents µ1 limit |S| → ∞ null

distributions for various dimensions k for the dimension independence case.

On the other hand, the null hypothesis may assume a certain structure of column correlations, e.g. corre-

sponding to a larger group of patients with CNV segments inside a particular window, and a null distribution
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may reflect that. First approach we’ve taken is to fit as a null distribution Beta(α, β) shifted to the ap-

propriate interval (min(µ1),max(µ1)). This outlier detection procedure is considered less conservative since

Beta has a lighter tail than the Dk
µ1 for small k.

Second approach presupposes that the distribution of k-mers of pseudo-ranks is described by a certain

copula C. In case the rank distribution is a certain copula Dp = C, the c.d.f. of the null distribution Fµ is

estimated through approximation of the following integral, by either computing it numerically, or through

sampling from the fitted copula C:

Fµ(m) =

∫
[0,1]k

1F−1
µ (z1,...,zk)≤mdDp(z1, . . . , zk) =

∫
[0,1]k

1∑k

i=1
F−1
µ (zi)≤m

dC(z1, . . . , zk)

Parameters of copula C are fitted for each window, the null distribution is obtained by integration of the

µ1 statistics over copula C. However, classical families of copulas (Gaussian, t-copula, Archimedean) are

not suited to model multidimensional k-mers with asymmetric dimensional dependencies, a copulas mixture

approach is more adequate [3]. Then, the mixture approach suffers from huge dimensionality – obtained

solutions are only locally optimal, dependent on a mixture fitting starting point.

In either approach, k-mers with p-value less than 0.01 (suggested frequency of pathogenic CNVs) are

selected as markers. Results presented in this paper originate from the first, Beta fit, approach.

Selected markers are lined up on the considered segmentation. We sieve out segments without any

markers inside and sort segments that remain according to the density of coverage by markers (best scoring

segments are most densely covered). We call the score assigned to reported segments density score in the

sequel, as it corresponds to the percent of the segment covered by markers.
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Figure 1: Processing of logratio data/ In each subfigure, rows corresponds to samples and columns to
probes. On the left: the effect of rank transformation; the same fragment of the genome represented by
logratios (a) and their column ranks (b). The wave pattern is eliminated, while true signal (clear deletion)
is strengthen. On the right: the polymorphic region in the middle is surrounded by wave patterns and only
one significant deletion is visible (c); markers found by our algorithm indicate only deleted segment, all other
spurious signals are ignored (d).
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Figure 2: This figure presents histograms from samples from µ1 (L1 distance) null distributions (limit
|S| → ∞, number of cases converging to infinity) for various dimensions k. This sampling undertakes the
assumption of column (dimensions) independence.
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